Biotech-Space-2019-V51A1200.jpg

ABOUT US

 

TEAM

LEADERSHIP

ADVISORY BOARD

SCIENTISTS & ASSOCIATES

Nanda-Thudi-4794.jpg

Dr. Nanda K. Thudi Senior Scientist

Amanda-Weiner-V51A3148.jpg

Dr. Amanda C. Weiner, Scientist I

Zeelu-Patel-V51A3086.jpg

Zeelu H. Patel,

Scientist I

Raheema-Damani-V51A3108.jpg

Raheema A. Damani, Bioengineering Lab Tech

Heli-Patel-1258.jpg

Heli K. Patel,

Life Sciences Lab Tech

 

PARTNERS

 

SCIENCE

Microscope
Biomimetic Interface Device and Methods of Using the Same (US 10,969,383 B1)

Karim I. Budhwani

Date: 04/2021

Organization: US Patent and Trademark Office

Continuing from US 10,114,010 B1. The present disclosure generally pertains to a biomimetic apparatus configured to simulate physiological conditions by, in part, providing for both barrier and transport interfaces. The presently disclosed apparatus may be used to test therapeutics for different diseases; to study transport; form a substrate for any organ tissue with a barrier and/or transport function; provide a closed-loop assembly for fluid flow; mimic underlying and enveloped tissue; and model external environmental conditions.

CerFlux POET™

matches treatment to tumors.

Asset 3@8x.png
Development of Personalized Oncology Efficacy Test (POET™) for Breast Cancer

Karim I. Budhwani

Date: 12/2020

Organization: Breast Cancer Research Foundation of Alabama

Cancer is pervasive; nearly half the world will be diagnosed with cancer. Each year, >1.7 million patients are diagnosed with cancer in the United States alone; of these, about 300,000 cases are breast cancer (BC). Worse, about 70% of those receiving systemic therapy will be treated with drugs that do not work for them because those drugs do not match the patient’s tumor, imposing a substantial physical, emotional, and financial burden. This is because BC is heterogeneous; tumors differ greatly from patient to patient both in makeup and in response even to the same treatment. And yet, for lack of clinically relevant therapeutic efficacy predictive tools, treatment is based on generalized parameters, potentially exposing patients to several rounds of ineffective therapy with potentially life-threatening toxicities. Timely effective treatment can increase overall survival. There is a critical, unmet, and urgent need to match the right treatment to the right patient prior to treatment to reduce unnecessary morbidity, expense, and loss of time from failed therapy. CerFlux is developing innovative ex vivo technology to bridge this gap. Our proposed Personalized Oncology Efficacy Test (POET) will rapidly match patient tumor tissue with various therapeutics simultaneously – before treatment – to identify the right treatment for each patient on an individualized basis which is fundamentally better than the current nonselective approach.

AdobeStock_326131220.jpeg
Development of Personalized Ex Vivo Predictive Technology for Rapidly Matching Patient Tumors with Chemotherapy Regimens Before Treatment.

Karim I. Budhwani

Date: 09/2020

Organization: National Institutes of Health

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers with <9% five-year survival rate and an estimated 60,000 deaths/year by 2030. PDAC is often diagnosed at an advanced stage thereby precluding surgical resection for most patients. While new systemic therapy regimens have improved survival, availability of multiple options, without tools to select an optimal regimen from these (on an individualized basis), has created a frustrating paradox in clinical decision-making. Due to a lack of personalized predictive tools, current standard of care treatment strategy is based on prognostic factors such as age, stage, performance status, serum albumin, etc. There is a critical, urgent and unmet need to develop predictive tools that can identify optimal systemic therapy regimens and eliminate from consideration ineffective options, on an individualized basis, to improve quality of life and reduce overtreatment. CerFlux, Inc. is developing such predictive technology with its low-cost and rapid Personalized Oncology Efficacy Test (POET) to match each patient with the right treatment – before treatment – to transform pancreatic cancer treatment in the near term and make a difference in the lives of patients and providers around the world. Our personalized medicine approach is unique and further enhanced by a commercial-academic collaboration between CerFlux, Inc. and the James Comprehensive Cancer Center at the Ohio State University. The proposed project will build on recent work by our team including a patented (US 10,114,010B1) biomimetic in vitro platform for pharmacological transport and pancreatic microtissue tumor models. The commercial goal of this proposal is to identify best practices for using POET in personalized therapy. Our hypothesis is that response to treatment observed in POET will approximate the response in the corresponding patient. Our objective is to predict both effective and ineffective treatments for each patient prior to initiating treatment. We envision substantial continuing commercial-academic collaboration between CerFlux, Inc. and the James Comprehensive Cancer Center at the Ohio State University including the integration of machine learning to derive a “POET Score” – a personalized quantitative efficacy score – based on a combination of factors. Data from POET and the POET Score will help clinical teams rank treatments for individual patients before the first drug infusion. If successful, this SBIR-driven study has the potential to transform pancreatic cancer treatment in the near-term and make a positive impact around the world.

Evaluating Population Density as a Parameter for Optimizing COVID-19 Testing: Statistical Analysis

Karim I. Budhwani, Henna Budhwani, Ben Podbielski

Date: 08/2020 (preprint) 03/2021 (print)

Journal: JMIRx | Med

Background: SARS-CoV-2 transmission risk generally increases with the proximity of those shedding the virus to those susceptible to infection. Thus, this risk is a function of both the number of people and the area they occupy. However, the latter continues to evade the COVID-19 testing policy. Objective: The aim of this study is to analyze per capita COVID-19 testing data reported for Alabama to evaluate whether testing realignment along population density, rather than density agnostic per capita, would be more effective. Methods: Descriptive statistical analyses were performed for population, density, COVID-19 tests administered, and positive cases for all 67 Alabama counties. Results: Tests reported per capita appeared to suggest widespread statewide testing. However, there was little correlation (r=0.28, P=.02) between tests per capita and the number of cases. In terms of population density, new cases were higher in areas with a higher population density, despite relatively lower test rates as a function of density. Conclusions: Increased testing in areas with lower population density has the potential to induce a false sense of security even as cases continue to rise sharply overall.

Coronavirus_3D_illustration_by_CDC_1600x
micromachines-11-00687-g001-550.jpeg
Measuring Surface and Interfacial Tension In Situ in Microdripping Mode for Electrohydrodynamic Applications

Karim I. Budhwani, Gerald M. Pekmezi, Mohamed M. Selim

Date: 07/2020

Journal: Micromachines

Walking on water is made possible, at least for tiny insects, by molecular interaction at the interfaces of dissimilar materials. Impact of these interactions—surface tension (SFT) and, more broadly, interfacial tension (IFT)—is particularly evident at micro and nano sizescales. Thus, implications of walking on water can be significant for SFT or IFT (S/IFT)-driven nanofabrication technologies, such as electrohydrodynamic atomization (EHDA), in developing next-generation biomimetic microphysiological systems (MPS) and drug delivery systems (DDS). However, current methods for estimating S/IFT, based on sessile drops or new surface formation on a ring or plate, are unsuitable for integration with EHDA assemblies used in electrospinning and electrospraying. Here, we show an in situ method for estimating S/IFT specifically devised for EHDA applications using signal processing algorithms that correlate the frequency and periodicity of liquid dispensed in EHDA microdripping mode with numerical solutions from computational fluid dynamics (CFD). Estimated S/IFT was generally in agreement with published ranges for water–air, 70% ethanol–air, chloroform–air, and chloroform–water. SFT for solutions with surfactants decreased with increasing concentrations of surfactant, but at relatively higher than published values. This was anticipated, considering that established methods measure SFT at boundaries with asymmetrically high concentrations of surfactants which lower SFT.

AdobeStock_212568757.jpeg
Bridging the Gap in Training and Clinical Practice in Sub-Saharan Africa

Mansoor Saleh, Gurudatta Naik, Anne Mwirigi, Asim Jamal Shaikh, Saleem Sayani, Munir Ghesani, Sheemain Asaria, Aliyah R. Sohani, Shahin Sayed, Zahir Moloo, Karim I. Budhwani, Zohray Talib

Date: 08/2019

Journal: Current Breast Cancer Reports

As medical knowledge and innovation reach new heights, there is a growing gap in medical advancements between low- and middle-income countries (LMICs) and high-income countries (HICs). The former has a lack of basic health care and preventive or diagnostic services for early cancer while the latter has access to novel diagnostic and therapeutic modalities. The key to overcoming this disparity is finding ways to bridge this divide across distances and continental divides through innovative technology and sharing of knowledge by committed individuals and through public-private partnerships. Many initiatives that include onsite and online training programs for regional healthcare providers have shown that the gap in medical training between HICs and LMICs can be narrowed. The following article shines a light on this disparity and provides exemplary case studies of ways in which this gap between LMICs and HICs can be bridged.

Lab-on-a-Brane: Biomimetic interface device and methods of using the same (US 10,114,010 B1)

Karim I. Budhwani

Date: 10/2018

Organization: US Patent and Trademark Office

The present disclosure generally pertains to a biomimetic apparatus configured to simulate physiological conditions by, in part, providing for both barrier and transport interfaces. The presently disclosed apparatus may be used to test therapeutics for different diseases; to study transport; form a substrate for any organ tissue with a barrier and/or transport function; provide a closed-loop assembly for fluid flow; mimic underlying and enveloped tissue; and model external environmental conditions.

Asset 1@5x.png
Asset 4@9x.png
Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling

Karim I. Budhwani, Patsy G. Oliver, Donald J. Buchsbaum, Vinoy Thomas

Date: 10/2018

Journal: Novel Biomaterials for Regenerative Medicine

Biomaterials engineered to closely mimic morphology, architecture, and nanofeatures of naturally occurring in vivo extracellular matrices (ECM) have gained much interest in regenerative medicine and in vitro biomimetic platforms. Similarly, microphysiological systems (MPS), such as lab-chip, have drummed up momentum for recapitulating precise biomechanical conditions to model the in vivo microtissue environment. However, porosity of in vivo scaffolds regulating barrier and interface functions is generally absent in lab-chip systems, or otherwise introduces considerable cost, complexity, and an unrealistic uniformity in pore geometry. We address this by integrating electrospun nanofibrous porous scaffolds in MPS to develop the lab-on-a-brane (LOB) MPS for more effectively modeling transport, air-liquid interface, and tumor progression and for personalized medicine applications.